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The study of exchange coupled metal ions has been the subject of
numerous studies employing a variety of physical and spectroscopic tech-
niques. Electron paramagnetic resonance studies of crystalline dimeric
complexes and highly doped single crystals containing pairs have been
reviewed extensively[1-4].The magnetic susceptibility of dimeric complex-
es has also been the subject of several reviews[3,5-7], and a number of
n.m.r. contact shift studies[8] of dimeric complexes have been reported.
The interpretation of all such studies rests upon the determination of
the parameters contained in the spin Hamiltonian of the pair. The eval-
uation of matrix elements then is a primary concern, and there are basi-
cally two ways in which to approach the problem. In the first method
one takes advantage of the fact that the spins are coupled by taking
linear combinations of single ion state vectors, |SISZMIMZ>’ so that the
resulting wave functions are eigenfunctions of the total spin operators
g2 and zz(zi = S]i+52i)' but treats the problem completely in terms of

single spin operators. In the second method one starts with the coupled

representation state vectors, |SM>, and transforms the Hamiltonian so

that it contains only total spin operators. The generality of this

method provides insight that is lacking in the first approach to the pair

problem and also reduces the number of operator expressions required

to evaluate the Hamiltonian matrix. To our knowledge, a full treatment

of the general case using the "total-spin" Hamiltonian has not been

reported. Thus, it is the purpose of this paper, to report the results

obtained by the latter method through the application of the Wigner-
| ;

Eckhart theorem. -  dF
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I. The Pair Hamiltonian.

We assume that the pair Hamiltonian can be expressed as the sum of
the two single ion spin Hamiltonian plus terms representing interactions
between the two ions of the pair. This implies that the interaction
terms are small compared to the crystal field splittings and will thus
have a negligible effect on the single ion tensors. The general form
of the pair Hamiltonian can then be written as follows:

H = HytH, - ZJSI 52 + s] D..S (1)

2 ~e*d 2’

where

§ = BHGS; + S,°D.°S, + S;°A L.
Eq. (1) assumes nothing about the relative orientation or form of the
various tensors, and De+d can contain anisotropic exchange terms as
well as the dipole-dipole contribution. The usual procedure for eval-
uating the matrix of (1) is to expand the total spin state vectors

IS M>, in terms of the single spin state vectors, IS]SZM]M2>, as follows:

[SM> = £ C(S;S,5:MMM)[S,S,M\M,>, (2)

I
MM,
where C(S S S M M M) is the Clebsh-Gordan coefficient, for which we have

adopted Rose's[9] notation. Once the wave functions are in this form one
can use (1) directly to evaluate matrix elements. While this process

is straightforward, it is quite tedious, and the expansion in (2) must
be found for each pair system characterized by different S] and 52‘

It is possible to avoid the expansion in (2) by evaluating the matrix

of (1) in the coupled representation, and to facilitate this process

we have rewritten (1) as follows:




H= =0{2'L - $1(5,+1)-5,(5,+1)}

+ B/2{H’ QU L+ H AW 1/2{(x A] 11 a-A A I]}
+ 1/4{;1.)0 -yg-gu e} + 1/21:_ Ds"2» (3)
where I = §,45,, 4

= 8175, 6 = §*6;, G;= 6,-6,, etc. The state
vectors |S,M> are eigenfunctions of the familiar total spin operators
I'Iand I, and matrix elements of the form <S'M‘|zi|SM>. (i = x,¥,2),
vanish for S'#S. Terms containing components of the less familiar vec-
tor operator A, however, follow the selection rule S' = S, Sil, St2.
The matrix elements of terms containing LY (i = x,y,z) can also be
evaluated in the coupled representation. Much of what will follow then,
wil)l deal with finding the matrix elements of the A and in particular
we shall attempt to show two important results:

1. For the special case of matrix elements within a given S mani-
fold (<S'M'|H|SM >, where S = S'), any operator expression containing
A can be replaced by the corresponding expression containing E; if a
proportionality constant is applied. This result is particularly impor-
tant since if -2J3,'S, is much larger than the other terms in & ( a case
often encountered experimentally), these are the only matrix elements
one needs to evaluate.

2. For matrix elements between spin manifolds (S'#S), the matrix
elements of 45 can be evaluated by general formulas that are simple to
use, and make possible the identification of zero matrix elements with-

out tedious algebraic manipulations.




II. Irreducible Tensor Operators and The Wigner-Eckhart Theorem.

For much of what will follow, it will be convienient to introduce
the irreducible tensor operators. These operators are defined by

Racah through the following commutation relationships:
(2,0 Typ(x)] = uT, (x), (4)

[z, T ()] = (2(2)-n(m1) /21,0 ()
where TZm(x) is the mih component of an irreducible tensor operator of
rank 7 and operator variable x. The operator variables of interest
here are x = t,A,S], and 52' It is also possible to construct irreduc-
ible tensor operators of mixed operator variable and for the present
case we sh&ll need two such operators of this type, TZm(SISZ) and TZm
(za). In Table I we have collected all of the irreducible tensor opera-
tors we shall have need of, and it is easy to show that they do indeed
satisfy the commutation relationships in Eq. (4). It can also be seen
from Table I that the irreducible tensor operators are nothing more than

normalized linear combinations of ordinary cartesian vector operators.
A theorem involving irreducible tensor operators that we shall use
extensively is the Wigner-Eckart Theorem, which can be expressed as
follows:

<S'M'|T, (x)|SM> = C(SIS' ;MM )<S' [T, (x)[[S>.  (5)

Thus, the Wigner-Eckart theorem states that the matrix elements of

an irreducible tensor operator can be decomposed into the product of

a CIebsch?Gordén coefficient and a quantity commonly referred to as a
reduced matrix element. The Clebsch-Gordan coefficient contains all of

the directional or m dependence and is completely independeni of the




The reduced matrix element contains purely dyna-

operator variable, x.

mical information and is, as the notation implies,completely independent

of M, Mand m. It is obvious that (5) can be extended to include sums

of irreducible tensor operators of the same rank so that we may write

formally,

<S'M*|ZT, (x)|SM>=<S* | |T,(x)| [S>2C(S2S";MmM').  (6)
m m

The importance of Eq. (6) lies in the fact that all of the operator

expressions that arise from the pair Hamiltonian (Eq. (3)) can be

expressed as linear combinations of irreducible tensor operators. To

show this is a relatively simple matter which we will illustrate for

one of the operators in (3), a°D -aA.

ag
D 0 O
a0 -3 =840 p ‘A=
0 N
a2p 2p 4+ p%p = (D /2)[3A -A*A] + g

xoxx ¥ 4y oyy ¥ 22%a2

(D 01512 (Az Azl

where use has been made of the fact that qo is traceless. Examination

0z2z

of Table I reveals immediately that [3A§-Q'é] = MBTZO(A).The second

operator requires a bit more work; from ordinary cartesian vector z

operator algebra we have:

[sz -Ayz] =1/4 {(A++A_)z +(A+-A_)2} » I/Z(Af + Af).

Upon examination of Table I we see that,

2

| :

172(82 + 42) = Top(8) + T, 5(a). i i
Thus, %
/6 &
1

808 = 7055,T50(8) + (0550, [Tpp(8) + Ty p(8)], 1 ]




where go is in its diagonal representation. If we choose some non-
diagonal representation for go. the expression for é-po'g will be more
complicated, but it will still prove possible to express it as a linear
combination of irreducible tensor operators. A1l of the operators in
Eq. (3) can be treated in a similar manner, and once this is done the
Wigner-Eckart theorm (Eqs. 5 and 6) can be used to take matrix elements.
We have done this for all operators containing A, and collected the
results in Table II. Many of the operator expressions in Table II
will occur only if the interaction tensors are non-diagonal. In order
to obtain the equivalent expression for operators involving I one
simply replaces A by I everywhere in the expression.

Table II shows that we have reduced the task of finding the matrix
of (3) to finding sums of Clebsh-Gordan coefficients for which standard

tables are available[10], and evaluating reduced matrix elements. The

reduced matrix elements will be considered in Section III.
An additional expression of interest can be derived by applying
Eq. (6) twice, namely:
<S'H |):TZm(x) | SM>={<S| ITZ(x)l |S>/<S' | |Tl(z)| |S>}
m
x<S'M* | ;TZm(z)ISM>‘

However, the above becomes indeterminate for S # S' since both
<S'HﬂzT1m(z)|SM> and <S'||T,(z)[|S> are zero in this case and thus
m

we are left with the less general expression:

<S"|Iszm(x)|S"> = <SHTZ(X)“S> X <SM'|ETM(E)|SM>- (7)
m <§||'Z!EH|§> ' m

w i ;"\"A:‘\;J‘H;‘L’fm- > ST
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Eq. (7) states that within a given S manifold, the matrix elements of
any irreducible tensor operator of operator variable x are proportional
to those of the corresponding one with operator variable . The pro-
portionality constant is the ratio of reduced matrix elements and this
will be different in general for different S manifolds. We will be
interested in two cases, namely x = A and x = A, and (7) implies that
for S'=S elements we shall have no need for Table II since we can make

the following operator substitutions:

B850 - R‘s’ﬂﬁs L. 40 R DT

IM
U
>

[}
o
—~ 1
w
S
M
IM

where the R(s) are reduced matrix element ratios. The advantage of
this is that the matrix elements of operators containing only = are
easily evaluated in the coupled representation, and thus once the

appropriate reduced matrix element ratios are found we can evaluate

any S'=S element with the use of ordinary operator algebra.

III. Reduced Matrix Elements

In arder to evaluate the reduced matrix elements in Table II we

again use Eq. (5), the Wigner-Eckart Theorm. Then, for X = A we have:

<S'M'[T,q(8)|SM> = C(525" ,MOM)<S" | |T,(a) ]S>
It is easily shown, however, that

<S'M'|Tpo(8)[SM> = <S'M'|To0 (04T (S,)-2T(5;S,) |SM>

XN R BN e ey

R aa e
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Applying (5) to this expression yields

<S'M'|Ty0(8)[SM> = C(S2S' sMOM* ) {2<S" | [T, (S,)] [S>+2<S" | |T,(S,) | |S>

- <S'| 'TZ(E)I [S>}.
Comparing the two results we find that we have an expression for the

D suad

reduced matrix elements of TZ(A) in terms of those for TZ(SI)’ TZ(SZ)’
and Tz(z). This procedure can be applied to the other reduced matrix

elements in Table II and the results are given in Eqs. (8).

ST, ()] 18> = <S*[[T,(s))][s> - <s'][Ty(s,)[[s>  (8)

<S'||T2(£A)||S> - <S'||T2(S])||S> & <S'||T2(52)||S> (8b)

ST )1 = 2657 Tyl5p) Is92s5'1Tyl85) [$2-5* [T 0D Joo

The advantage of using Eqs. (8) instead of deriving theoretical expres-
sions for TZ(A) and Tz(zA) directly, is that general expressions for
‘S'IITZ(51)||S> have already been derived (see for instance Reference

2., Rose). For example, it can be shown that,

ST P18 = (1) 2751 s 1) (25011 (s 5,5, -

15,)<89 | 1T,(5;) 115> (%) |
where H(SS'S]S]; 252) is the Racah coefficient; standard tables of i
Racah coefficients similar to those for Clebsh-Gordan coefficients are

available[11]. Eq. (9a) then relates the matrix of TZ(SI) in the coupled

representation to its matrix in the uncoupled representation.

The
expression for TZ(SZ) is:

= R 4. 5 S
iy s T e e,




ST, () 115> = (-1 11832731 (25,41) (25+1) 1/ A(5515,,5,515, )
S lIT(5)11570  (9b)
where the change in phase from (9a) to (9b) can be thought of as arising
from permuting the state vectors |52515> to their usual form |S]SZS>.
The remaining reduced matrix elements that must be considered are
<S'IITZ(S)I|S>,<Si||TZ(Si)||Si> (i = 1,2). This can be done directly
through the Wigner-Eckart Theorm as we shall illustrate for T]m(z).

From Eq. (5) we have,

ST T (21| [S> =<SINIT;, (3)|SHO/E(S25" ')
Since the 1.h.s. must be independent of M',M and m, we choose M' = M,
= 0 and obtain: '

<S'|T,(z)]]$> = <5’ MIT]o(z)lSM> = <5 M|z lsn> :

where use has been made of Table I in the last step. Evaluating the

matrix element and using a table of Clebsh-Gordan coefficients we have:

<s'[[T ()] |s> =m'M L, oIS

The same procedure can be used to evaluate <S']|T2(z)||S>, (S]!|TZ(S])|IS]>,
etc.

We now have expressions for all of the reduced matrix elements of
Tz(S]), TZ(SZ) and TZ(Z), and these yield explicit algebraic formulas
through the use of standard tables of Racah and Clabsh-Gordon coeffic-
ients; these formulas are collected in Table III. Thus, with the aid
of Eq. (8) and Table III we will be able to tabulate explicit express-

jons for all of the matrix elements in Table II and also to evaluate

any reduced matrix element ratio we wish.

G AR5 ASNEA AN SR 050 o — ot " " AT PR BT e P ¥ AR 4TRSS
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IV. The Matrix of the Pair Hamiltonian

From the foregoing it follows that a convenient way to evaluate
the matrix of (3) is to consider it as two separate Hamiltonians, one
which connects S' = S elements and one for S'# S elements. It then
follows from (7) that the former will contain only I as an electronic
spin operator and thus, these matrix elements can be evaluated by the
usual operator methods as soon as the proportionality constants in (7)
are known. For S'#S elements the Spin Hamiltonian will have only those
spin operators containing 4 and we will need a separate expression for
each such matrix element. The remainder of this paper then will be
aimed at illustrating how one goes about using the formalism of the
Previous sections, and we shall try to do this in such a way, that one
may use the formulas without becoming enmeshed in the details that led
to them.

A. S'=S Elements
We begin by rewriting (3) entirely in terms of the electronic total

spin operator L according to (7) as explained earlier:

Horog = ~IE-E-5(5,#1)-5,(S,+1)} (1)

*(B/Z)ﬂ'{go’c%}'it’gl;.ﬂ-ﬁ] -l] + (1-C };-52!2]

+(1/2)E 1(1-C4)0gy g + C,0,*C D }°T .

where C and Ct-are functions of S, S, and S,, and L, G;, G,, etc. have
been defined below (3). From this it follows that for each of the spin
multiplets C and C, will differ, and thus one is using a somewhat

different Hamiltonian for each manifold of spin S. The definitions of
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these constants in terms of reduced matrix element ratios and explicit

SR N  CRNE S

algebraic formulas for them are given in Table IV. Otherwise, one uses
(11) in the usual manner, with coupled representation state vectors,
|SM>, as a basis set.

If one considers the case where J is much greater than the other
terms in (3) we can consider the properties of the pair as arising
from isolated spin multiplets, and use (11) exclusively. Experimentally,
this results in a rather interesting e.p.r. spectrum; each multiplet
can be thought of as arising from an effective spin Hamiltonian of the

form:

115]
o

H=gH-G'L + LAy + Z-Ay 1, + Z:DeF

=2
and in general, these "effective" G, ﬁ.and4g tensors will be different

for each spin state. These tensors are not, however, independent but
are related to the fundemental tensors of the system through the con-
stants in Eq. (11). For S]=Sz, ali effective G and A tensors will be
equal to the actual §_and ﬁ_tensors for all spin states since Table IV
reveals that C = 0 in this case. An interesting example of a case where

3 pairs

all spin states were observed by e.p.r. has been reported for Cr
doped in the spinel lattice MgA1204. These authors were aile to relate
the spectrum of each spin state to the same set of fundamental tensors.

Also, they were able to observe the effect of the 9e+d tensor unobscured §

by the other possible contributors (Qu and Qs) to the "effective" D
tensor. Examination of Table IV and Eq. (11) shows that for S]=Sz=3/2
this will alweys be possible since for the S=2 state spectrum C, = C_=0

and thus ge,

d will be the only fine structure term.

Gl sl s
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It should be pointed out that other Hamiltonians similar to (11)
have been suggested previously. Owen[1] has given a pair Hamiltonian
appropriate for the special case S] = 52 and all tensors sharing the
some major axes. Choa[13] has derived a more general Hamiltonian similar
to (11), which in our notation becomes:

Ho = =0{E°2-5(S,#1) - S,(S,#1)1+8/2H" (K\G) + K6y} 'L

+1/20- (KA I + KA T 27 (1720, 1-1/2C,D, 4+CqD, (12)

0, 1/20,0, 412

By definition, Choas constants should be related to ours as follows:
C=K-1=1-K,, 9: = 1/2(C11§2). (13)

Using (13) and the expressions below (3) (i.e. 6 = 6 + Gy, G, = G; - Gy,

etc.) one can show that (11) and (12) are in fact identidal. Unfortunat-

ely, comparing Table IV with the algebraic formulas in reference 13

reveals that while the definitions involving K],K2 and C in Eq. (13)

hold those involving Cl.c2 and C+ do not. The error is apparently in

Choas expressions for C.l and c2 s;hce with these, Eq. (12) gives incorrect

matrix elements as compared to either (1) with the expansion in (2)

as a basis set or (11) with the |SM> as a basis. The latter two have

given identical matrix elements, as they should, for all cases we have

checked. Since,
SBIns . SIS
C] = 2.5 %y L > »
SIS 2
the correct formula for these constants can be found in Table III. It
is also worthwhile mentioning that for the special case 51852, C+ is

jdentical to the Owen-Judd constant[1] B as it should be.
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8. S'#S Elements

As discussed earlier, for these matrix elements, one need only

consider operators involving A since those not containing this are zero.

Eq. (3) then reduces to:

Bowgs = O/ES * Veltolyhy - 370y Ly)

(14)

+ 1/8(8°D,"8420°D-8-4"Dg, 478

The matrix elements of all possible operator expressions that can arise
from {14) are given in Table V; these formulas result from direct appli-
cation of the Wigner-Eckart Theorem, Eq. (5). Table V then, is just an
explicit form of Table II, and thus, the expression for each matrix
element is the product of two quantities: a Clebsch-Gordan coefficient
sum and a reduced matrix element. In using (14) one should keep in mind
that it is easy to identify the non-zero matrix elements even before
Table V is consulted. This follows from two considerations:

1. The two states to be connected must satisfy the triangular
relationship with the rank (the Z.of the TZm(x)) of the connecting opera-
tor. In (14) we have only first rank (ﬂ-gs'é, A'Ai'li) and second rank
(4°D -8, Z:D; 4, 5'9e+d'9) operators. Thus, the former can connect two
states only if S' = S+ 1, and the latter only if S' = S+ 1, S + 2, (dis-
regarding of course S' = S elements which have already been considered).
Furthermore, it turns out, that z:D..A connects only S' = S'+ 1 elements

even ihough it can be expressed as sum of second rank irreducible tensor

operators.

sy e RS
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2. The operator expressions involving Ai(i = x, ¥, Z) havz pre-
cisely the same "M" dependence as their I counter parts. To choose a
2
concrete example, 34 -A+4 and 3I,A,-I-A connect only thosezst;tes where
M'=M just like their familiar 3:5-;-5 analog. Similarly Ax-Ay and
£ A - L A can connect only those states where M' = M+2 as is true for

£ X Yy

zi-zs. Knowing the above properties of (14) greatly reduces the number
of matrix elements one need consider and it should be noted that most of

what has been said in this regard follows immediately from the Wigner-
Eckart theorem.

Examination of Table V shows that we have given all of the explicit
formulas necessary to determine the unique half of the Hamiltonian matrix
for S'#S elements; the other half can be found through the relationship,
<S'M'|H|SM>=<SM|H|S'M'>*. To our knowledge this is the first time such
formulas have ever been reported. The use of 4 = §1-§2 is not unique
here, but has been used occasionally especially in regard to the effect
of exchange on spectral linewidths and lineshapes in concentrated magnetic
substances.3’]4

C. Symmetry Considerations

Equations (11) and (14) are completely general and appropriate for
any exchange-coupled pair of metal ions irrespective of the relative
orientations of the single fon tensors, or the characteristic single ion
spins S] and 52' In the case S‘ = 52’ it is possible that some crystallo-
graphic or approximate symmetry element relates the two ions of the pair.
Such symmetry will in some way constrain thé form of both (11) and (14)
and thus, simplify the problem. The subject of symmetry related tensors
has been considered in some detail elsewhere,ls so will give only a brief
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description of how this bears on the pair problem. For what will follow
we shall assume that the single ion tensors are real and symmetric; the
validity of this assumption is discussed in Abragam and Bleaney’ excellent
monograph[16]. The following two examples should serve to indicate how one
goes about using the symmetry of the pair to advantage. Let us represent
some symmetry related pair of tensors for the system (for the present

case, the pairs G,,G,, A;,A, and D,,D, are of interest) as B;»B,. We

will write these as 3x3 matrices of the general form

Xy Bixz S
ixy Biyy B'iyz

B1'xz iyz B1'zz

Furthermore, let the priﬁcipal values of B1 be B 4xx’ Biyy’ B:..s and call

izz
the coordinate system that makes gi diagonal (the major axis system of

Bi) the x;, y;, z; system, i =1,2. Since B, is related to B, by

some symmetry element, the principal values of both will be identical,
(i.e., Bljj = szj,(i, J = x,y,2) but it will not neéessarﬂy be true that
B,=B, when the two are referred to some common coordinate system. Instead,
they will be related ty the transformation equation:

-1 o
R™TBR = By, (15)
where R is the matrix that represents a symmetry element relating the
pair. We will now consider two examples in order to illustrate how (15)
restricts the form of (11) and (14).

¢, (1) Symmetry

Sk A B




From (15) we have:

i-]

where i is the inversion matrix. Without loss of generality we may

B, = By,

write this in ﬁhe following explicit form:
-100 B.Ixx ley lez -100 BZxx B
0-10 0-10{|= Bny B

2xy 2xz

ley Blyy Blyz 2yy B2yz
0 0. Bixz Blyz szz 0 Boxz Bzyz B2z

Upon performing the matrix multiplication we have:

lex ley lez B2xx Bny B2xz
BIxy Blyy B'lzz " Bny BZyy B2yz (16)
lez Blyz B'Izz B2xz BZyz BZzz

Eq. (16) reveals that in any arbitrary coordinate system, B]ij = BZij
(i,d, = xyz) and this restricts (11) and (14) as follows:
(a) The difference tensors G; and Dy are zero.
(b) The sum tensors 6, and D_ are simply twice the single ion tensors.
(c) From (16) it follows that the X1s¥ys2y system is identical in orien-
tation to the Xos¥5s2y system and also to the major axis system of
sum tensors.
Thus, once the tensors of the pair are determined experimentally
one has also determined the single ion tensors as well; we will see
later that this is not always possible. Also, is not possible in this
case to tell how the major axes of the tensors are related to the geometry

of the pair, nor can we restrict the major axes of D to be the same

e+d
as those for the other tensors in Eqs. (11) and (14).

02(222) Symmetry




For this case we have three mutually perpendicular two-folds, two
of which relate the two ions of the pair, the third being colinear with
the line joining the two ions of the pair. Let these symmetry axes define
the x, y, Z system and we will arbitrarily choose to call the direction
of the line joining the two ions z. Any other choice for this direction
amounts to a simple relabeling of axes. Eq. (15) now gives us the fol-

lowing two expressions:

21 - -1 .
Cox B1Cox = Bp» C oy By Gy = By

where 521 represents a rotation of 180° around two-fold parallel to the

i = x,y direction. Performing the matrix multiplication yields:

Bixx - Blxy = Bixz B)xx Bny Boxz
'ley Blyy 8lyz > B2xy BZyy BZyz %
“Byxz Blyz B2z Boxz BZyz B)2z

Bixx - ley Bixz Boxx Bny Boxz
'ley Blyy BIyz = B2xy BZyy B2yz

Bixz - Blyz B2z Boxz BZyz B2z

In order for both of the above to be true the following must also be true:
B]xz = B2x 2= 0, B]yz = BZyz = 0. With this, the content of the above

two matrix equations can be expressed as follows,

Ixy 0 B2xx B 0

0 0 B]zz 0 0 B

Txx ~ 2xy

222
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and (17) implies then that 2y:2, and z are all colinear, that is, the
two single ion tensor share a common major axis. Eq. (17) restricts the

sum and difference tensors to the following explicit form:

By = (2B, 00 By=/0  -2B, O
0 28,0 -8, 0 0 |.(18) |
g 0 e 0 0 o0 %

We have thus obtained a great deal of information about how the major

axes of the tensors are related to the geometry of the pair. It is also

possible to obtain some further information about the single ion tensor
themselves. Since both B] and B2 share z as a major axis, it follows
that a rotation around z will be sufficient to make X colinear with

x and N colinear with y., If we call the angle needed to do this o, the
corresponding angle for X5 and Yy is ~8. In terms of its principal

values the form of B] in the xyz system becomes:

-

- 2 2
B, = [[Bixxcos 848y, S1n o] [8,, Jsinecose 0

“Bryy
2

(19)

s < 2
(8)xx~B1yyJsinecose  [8, cos“e+s; sin“e] 0

. . Brzz) .

e

The corresponding expression for B2 can be found by replacing 6 by -6

; and 1 by 2 everywhere in (19). Equation (19) then gives explicit expres-
| sions for the Blij and BZij of (17) and (18) in terms of their principal
values and the angle 8. Thus, if one were to determine experimentally
all the sum and difference tensors contained in (11) and (14), one could
also find the principal values of the single ion tensors as well as the
angle 6. This is not always possible, and to see this, consider the

common experimental case where J is much greater than the other terms in




the pair Hamiltonian. We thus ignore the inter-multiplet matrix elements
and use only Eq. (11) to describe the pair. Examination of Table IV
reveals that for S,=5, the coefficients of G ;and D, which are C and C_
respectively, are both zero for all multiplets. It then follows that

all the observable information about the single ion G and D tensors is
contained in §° and go which from (17), (18) and (19) have the following

form:

z 2 2
B, f [B]xxcos e+8iyysin 0] 0 2 2 0
0 [BixxSi" e+s]yycos 8] 0 . (20)
- g

From (20), it is clear that even after the sum tensors are found there
will be only three equations for the four unknowns to be determined. Thus,
unlike the situation in Ci(T) symmetry, determination of all the "observ-
able"” information in the pair spectra will not in general be sufficient

to completely describe the single ions when the pair symmetry is 02(222).
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Table I
Some Irreducible Tensor Operators*

T10(8) = 8,, Ty;(8) = -1//2,, s 1//2a.

T,5(8) = 1724

Top(8) = -1/72[a A +8,8,]
Tyo(a) = 17760382 - 4-4]
Ty .q(8) =1/2[a,n_-8.4,]
T, _p(8) = 1724

TZZ(ZA) = 1/21z.4.]
Tpy(za) = -1/2[z 8, + z,8,]
Toolza) = 1//6[3z 8, - -]
Ty 1(28) = 1/2[z 8 +.8,]
Tz.z(ZA) = 1/2[z_a_]

Tp2(515) = 1720555,
T21(8952) = =1/208;554+51,52,]
Tog($1S5) = 1/76[35,,5,,-5,°S,]
B1(5152) = 1/2 [51,5,.451.52,]
T;;Z(S]Sz) - 17205, 5,_]

*To find sz(x) with x = ¢, Sl' S2 replace A above by desired operator

variable.
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<s| [(9)%1] ] 5>
<s||(7)%L] | 5>
<s| (7)1l ].s>x
<s|1(v)%1]],5>x
<s|[(7)%1]],s>%

<s| |(v2)21]],s>x
<s| [(v3)°L] [ 5>x
<s| 1 (v3)%1]].s>x
<s] | (v2)°L] | $>x
<s|[(v3)%] [, 5>x

<s| (9L ].s>x
<s[1(m)le] ] s>x
<s|[(v)te] ], s>%

[(.WeW*,S2S)2-( . W2-W*,S25)a]t
[( W2W¢ ,S2S)a+(, We-W*,S2S)]
(1 WLW®(S25)0-( WL-W® (S2S)2]}
[( WLW® S2S)0-( WL-W¢,S2S)I]

(/WOm¢ , S25)29/

[(W2W?,S2S)+( - We~H* 1 S25)2]}
[( Wew* 1525)3+( W2-W*,525) 2]
[( WLWE,S2S)d+( WL-WE,S25)I]8
[(/WLW®,S2S)0-(  WL-W*,S25)]

(\WOW ¢,S25)294

LW, SIS)I+( WL-WE,SIS)I]2/2 L
[( WIS, SIS)I-( WL-WE,S1S)a]2/2/
(WOW®,S S)2

waA03y| jJJeyyd3-4aubiM ay3 Aq sjuswa |3 XLlajey
I1 3lqe}l

<ns|*TAo-Ao%v| w. s>
£
A:m_~<-m<_.z.mv

s v? 0. 2v5) u, 5>

Lo X

<us|*vFvs?v 9| W, 5>

Azm_m“«-qu_.z.mv
£
<ns|"v*2-%v"z| ,u,s>

£k
<ws) v'2- *v*2|,m, 5>

Kz K
ws|'v'z + T2 5>
'Ndx

Z.X
<Ws| vz 2| WS>

<ws|7. Z- Zv¥zg|.W.5>

£
<Ws| V| .M, S>
s | ] . n. 5>
ns| 29| W, s>
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- Table III.

Reduced Matrix Elements of Tlm(Z) and T'Im(s'i)
<s'|Ty(z)|]s> = sss.-ﬁls-ns

<S'||Ty(e) 8> = 65,5/ 12S¥F (25-1)5(5+1)/6

<S;1IT5(85) ]S> = 8517(25,+3)(25,-1)S.(5,+1)/6




*043Z 03 |Bnba S| UOLSSaUdd 2Y] *370ULUI3I3PUL JUBWB|D X|JJPW PAJNPad © SINRW (=5 UOLINI}ISGNS Y3 31
8

(2+52) (€+52) (v+52) (G+52)

.N\—ﬂwP-m-~m+_wvam.~m+~mv-+m+_w-~mVA_+m+~m-_mvA~+m+Fm-~mvA~+m+~m-_mva~+m+~m+_mvAn+m+~m+_mv

(1+'s) Ls-(14%5)%s4(2es)s]. (————LLaSIS(EsSRN(pesE) ) .
2/t (1as+ls-%s) (1454%5-L5) (5-%s+Ls) (z454%s+ )

{ (Lss)s(e+sz) (v4S2)
2/ (1a54Ls-25) (1454%5-L5) (5-%s4 ) (2454054 Ls) 12/

((1+5)(£+52) /(s-Ps+L5) (Les+s-O5) (145+4%s-Ls) (2a54%s+5)12/1 = <s]I(%s) ] [nss>-

((+s)s(1-s2)(e+s2)2
ﬂ_+pmv_maF+mvm¢-ﬁa_+mvm-a_+~mv~m-ﬁ—+,mv_mun+NHA_+mvm-~_+~mv~m-ﬁ_+_mv_mum = <s]1(2)%1lIs>/<s]1(%s)%1] Is>

(1+s)s(1-s2)(€+s2)2

Jer = <] 1(%)21] l2+s> = <s|1('s)%L] Jzes>

<s|1(%s)%1] |L+s>

[(14%5)%s-(1+'5) Ls+(245)5]- <s|1('s)%Ll |1es>

<s|l(ts)le] 1es>

2/L

(1+15) Ls(145)sp-[(145)5-( 1+15) bs=(1+425) OsTe+, [ (145)8-(1+L5) Ls-(14%5) %s2e = <s]1()%0lIs>/<s Ik s)?L] Is>
(145)s/0(1+15) ts-(14%8) Ps+(1es)sI2/t = <s)1(2)'ul]s>/<s]1(s) ulIs>
(145)7((14%5)%s-(1+5) Ls+(1es)s 0271 = <sll(D)'y | s 7<s]1(ts) ] s>

(P3nuIU0Y sjuaws|3 X}J3eW Padnpay)
111 3Lqey
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Table IV

*
A. Constants for Eq. (11)

C = <S|[Ty(a)[[S> = $;(8;+1)-5,(5,+1)

<S|||](2,||§> S(S+1)

" ]/2{<S||T2(A)||S> ;
< 22 >

={3[s,(s,+1)-sz(sz+1)]2+s(s+1)[3s(s+1)-3-2s](s,+1)-2sz(sz+1)]}
[(2s+3)(25-1)s(5+1)] |

C. = <SHTHEA)IS>  (q(s41)[5,(S,+1)-5,(S,+1)13-3[S, (S,+1)-S5,(S )]
£ jelis sty b i b
<STITL,EITTSs (253 (B-1)5(5+1)

*
C, C+ =0 for S =0.
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